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The irradiance diffraction profile of a straight edge is given as a Taylor series in powers of the distance from
the geometrical shadow boundary to any point in the profile for monochromatic radiation. The coefficients of
the series, which are obtained as simple analytic expressions, are proportional to the real part of a complex
number whose phase cycles through a complete period every eight terms in the series. Integration of this series
over a Planck distribution of radiation yields the power series for the Planck profile; this derived series has a
finite radius of convergence. The asymptotic series for the Planck profile far from the shadow boundary and
beyond the radius of convergence of its power series is obtained by analytic continuation of the power series
with the aid of a Barnes type of integral representation.
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I. INTRODUCTION

Diffraction destroys the sharpness of shadow boundaries
defined by geometrical optics even in the case of point
sources. When an edge is assumed to define where radiation
lands downstream in an optical system, based on the pro-
jected geometrical shadow boundary, diffraction-induced sp-
illover can affect radiometric measurements. The effects de-
pend on the context, such as whether an edge is straight, is
the perimeter of a circular aperture or lens, or is the edge of
an obfuscating disk. Whatever the case, as long as the radius
of curvature of the edge is large compared to the scale of the
diffraction pattern, a straight edge can provide a reasonable
approximation to the irradiance profile in the vicinity of the
projected geometrical shadow boundary in the plane of the
detector. The geometry for production of the straight-edge
diffraction pattern is illustrated in Fig. 1.

For monochromatic radiation, the profile is described in
scalar Fresnel diffraction theory by Fresnel integrals. For ex-
ample, Born and Wolf discuss this in detail �1� and provide a
series expansion for the amplitude of this profile as a func-
tion of the distance from the geometrical shadow boundary
in the horizontal plane in Fig. 1. As far as we know, power
series expansions have been given only for the Fresnel inte-
grals themselves, which describe the wave field amplitude,
but not for the intensity profile. The intensity profile is the
square of the amplitude or, in the Planck radiation case, a
weighted integral of the monochromatic intensity profile. In
practice, not only monochromatic radiation, but also com-
plex radiation, and Planck radiation in particular, is of inter-
est. Therefore, this work provides the irradiance profile for
Planck radiation diffracted by a straight edge in terms of

�1� The Taylor series in powers of the distance from the
geometrical shadow boundary.

�2� The asymptotic series far from the geometrical
shadow boundary.

These results are obtained by the following strategy. The
power series for the monochromatic intensity distribution is
obtained by writing a differential equation for the intensity as
a function of the distance from the geometrical shadow
boundary. The power-series solution of the differential equa-

tion is obtained. From this power series, the power series for
the Planck radiation case is obtained by term-by-term inte-
gration of the monochromatic power series. Finally, the
asymptotic expansion for the intensity in the Planck radiation
case is obtained from its power-series expansion by employ-
ing a Barnes-type contour integral to carry out the analytic
continuation �2�.

The results reported here can be used to estimate the ef-
fects of diffraction of thermal radiation. For instance, these
results can help determine the radiative heat load on a cryo-
genic detector that is some distance downstream from an
optical element and some distance from the geometrical
shadow boundary. Also, because Fresnel diffraction is a good
approximation for edges with sufficiently large radii of cur-
vature near the geometrical shadow boundary, these results
exemplify the diffraction effects of the geometrical shadow
boundary in many geometries, and suggest qualitative as-
pects of the diffraction effects for other similar broadband
sources.

Since the pioneering works by Sanders and Jones �3�,
Ooba �4�, and Blevin �5�, accounting for diffraction effects
has been an international effort in the most accurate radiom-
etry. Most of the work has been devoted to assessing diffrac-
tion effects in the case of circular apertures �6�, for which
Boivin investigated diffraction effects near the aperture’s
geometrical shadow boundary �7�. Beyond Blevin’s work,
there has been some work on the diffraction of Planck radia-
tion �8,9�. This is an especially important problem, as it re-
lates to monitoring any changes in total solar irradiance,
which may affect climate change. For example, diffraction
analysis is often provided for various radiometers �10,11�. In
Ref. �11�, a 0.13% enhancement of the apparent value of
total solar irradiance is expected from diffraction effects in a
radiometer. This implies an error of about 1.8 W/m2 in the
deduced solar radiance. Omitting an appropriate correction
for diffraction would yield a measurement result that is not
sufficiently accurate for the purpose of monitoring solar and
related global climate variations.
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II. STRAIGHT-EDGE FRESNEL DIFFRACTION OF
MONOCHROMATIC LIGHT

In this section, the conventional theory of Fresnel diffrac-
tion by a straight edge based on the Kirchhoff theorem is
reviewed to define notation and to provide the starting point
for the calculations in this paper.

For a monochromatic scalar wave, with angular wave
number k that originates at a point r�, with coordinates x�, y�,
and z�, the field U�r� at a point r, with coordinates x, y, and
z, has the form

U�r� =
A exp�ik�r� − r��

�r� − r�
, �1�

where A is the amplitude of the spherical wave and is a
property of the source. If the wave is partially blocked by a
straight-edge half plane defined by z=z�, so that it can pass
through all points with coordinates x, y, and z� in the plane
with x�0, then the field downstream from the plane differs
from the form described in Eq. �1�.

In Kirchhoff’s diffraction theory, in the paraxial approxi-
mation, the radiation field at a point r downstream from the
plane is approximated as follows. With the shorthand ds
= �z�−z�� and dd= �z�−z�, Kirchhoff’s theory gives

U�r� =
A

i�dsdd
�

0

�

dx��
−�

�

dy� exp�ikL�r�,r�,r�� , �2�

where �=2� /k, and the optical path length L�r� ,r� ,r� from
r� to r� to r is approximated by

L�r�,r�,r� = ds + dd +
�x� − x��2 + �y� − y��2

2ds

+
�x� − x�2 + �y� − y�2

2dd

= �0 + �1x� + �1�y� + �2�x�2 + y�2� , �3�

with

�0 = ds + dd +
x�2 + y�2

2ds
+

x2 + y2

2dd
, �4�

�1 = −
x�

ds
−

x

dd
, �5�

�1� = −
y�

ds
−

y

dd
, �6�

�2 =
1

2ds
+

1

2dd
. �7�

To avoid ambiguity in the integral in Eq. �2� and in subse-
quent integrals, a small positive imaginary part is included in
k such that Im k=�, and the limit �→0 is taken after the
integral is evaluated. Without this replacement, the integral is
not completely defined.

The expression for the intensity is normalized to the in-
tensity U0

2 that would result with no screen obscuring the

radiation. That unobscured intensity is obtained from the ab-
solute value squared of the integral in Eq. �2� with the lower
limit for integration over x� replaced by −�. In this case, the
completion of the squares in the exponent and the rewriting
of the integration over x� and y� in polar coordinates yields

U0
2 = � 2�A

i�dsdd
�

0

�

dr�r� exp�ik�2r�2��2

=
�A�2

4�dsdd�2�2 =
�A�2

�ds + dd�2 . �8�

The spectral irradiance is thus given by

�U�r��2

U0
2 =

4�2
2

�2 ��
0

�

dx��
−�

�

dy� exp�ik��0 + �1x� + �1�y�

+ �2�x�2 + y�2��	�2

. �9�

The integral over y� is evaluated by noting that

��
−�

�

dy� exp�ik��1�y� + �2y�2���2

= ��
−�

�

dy� exp�ik�2y�2��2

= ��k�2�−1/2�
0

�

du u−1/2 exp�− u��2

=
�

k�2
, �10�

so that

�U�r��2

U0
2 =

2�2

�
��

0

�

dx� exp�ik��1x� + �2x�2���2

=
2�2

�
��

−x0

�

dx� exp�ik�2x�2��2

, �11�

where

x0 = −
�1

2�2
. �12�

The change of variable to t= �k�2�1/2x� with t0

= �k�2�1/2 �x0�, where Re�k�2�1/2�0, gives the following re-
sult. In the illuminated region �x0�0�, one has

�U�r��2

U0
2 =

1

�
��

−�

�

dt exp�it2� − �
t0

�

dt exp�it2��2

. �13�

In the shadow region �x0�0�, one has

�U�r��2

U0
2 =

1

�
��

t0

�

dt exp�it2��2

. �14�

Both cases can be combined by writing

PETER J. MOHR AND ERIC L. SHIRLEY PHYSICAL REVIEW E 74, 056606 �2006�

056606-2



�U�r��2

U0
2 = ���x0� −

1

�i��1/2�
t0

�

dt exp�it2��2

, �15�

where

��x� = 
1 for x � 0

0 for x � 0,
�16�

and Re�i��1/2�0 and t0 is a positive real number. The inte-
gral in Eq. �15� is conventionally evaluated in terms of
Fresnel integrals, as discussed by Born and Wolf �1�. The
power series for the integral is simply

�
t0

�

dt exp�it2� =
�i��1/2

2
− �

n=0

�
int0

2n+1

�2n + 1���n + 1�
. �17�

Equation �15� immediately gives the result for the geo-
metrical optics limit, i.e., �→0, because the integral van-
ishes for t0→�. This is confirmed by writing the variable t in
terms of its real and imaginary parts t= t1+ it2, which gives
it2= i�t1

2− t2
2�−2t1t2. This form indicates that the path of inte-

gration can be extended to �t � →� anywhere in the first
quadrant. Selecting the path in the positive t2 direction be-
ginning at t0 gives

��
t0

t0+i�

dt exp�it2�� = ��
0

�

dt2 exp�i�t0
2 − t2

2� − 2t0t2��
� �

0

�

dt2 exp�− 2t0t2� =
1

2t0
. �18�

III. DIFFRACTION EFFECTS NEAR THE SHADOW
BOUNDARY

Near the shadow boundary, it is useful in the monochro-
matic case to expand �U�r� /U0�2 as a power series in the
dimensionless parameter, 	= �k�2�1/2x0. In this way, the coef-
ficients of powers of 	 are independent of the wavelength
and details of the geometry.

From Eqs. �13� and �14�, in either the illuminated region,
	�0, or the shadow region 	�0, the intensity is given by

�U�r��2

U0
2 = f�− 	� , �19�

where the function f is defined as

f�	� =
1

�
��

	

�

dt exp�it2��2

=
1

�
�

	

�

ds exp�− is2��
	

�

dt exp�it2� . �20�

For this function

f�0� = 1
4 �21�

and

f��	� =
d

d	
f�	� = −

exp�− i	2�
�

�
	

�

dt exp�it2�

−
exp�i	2�

�
�

	

�

dt exp�− it2� . �22�

A function g is defined here as

g�	� =
exp�− i	2�

�
�

	

�

dt exp�it2� , �23�

so that

f��	� = − 2 Re g�	� �24�

and

d

d	
exp�i	2�g�	� = −

exp�i	2�
�

, �25�

or

g��	� + 2i	g�	� +
1

�
= 0, �26�

with

g�0� = � i

4�

1/2

, �27�

where Re g�0��0. A trial power series for g�	� is written as

g�	� = �
n=0

�

an	n, �28�

which together with Eq. �27� and Eq. �26� with 	 set to zero
yields

a0 = � i

4�

1/2

,

a1 = −
1

�
. �29�

The coefficients an for n
2 are determined by substituting
the series in Eq. �28� into Eq. �26� and equating like powers
of 	, which gives

an = −
2i

n
an−2. �30�

These coefficients yield the series solution given by

g�	� = � i

4�

1/2

�
l=0

�
�	e3�i/4�l

��1 + l/2�
, �31�

and hence

f��	� = − Re�� i

�

1/2

�
l=0

�
�	e3�i/4�l

��1 + l/2�� . �32�

Integration over 	 yields
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f�	� =
1

4
+ Re� i

���1/2�
l=1

�
�	e3�i/4�l

l��1/2 + l/2�� . �33�

Thus, from Eq. �19�, we have

�U�r��2

U0
2 =

1

4
+ Im� 1

���1/2�
l=1

�
�	e�i/4�l

l��1/2 + l/2��
= �

l=0

�
��1/2�sin�l�/4�
��1/2 + l/2�l�

	l, �34�

where in the last line, the term with l=0 is understood to be
the limit as l approaches zero of the general term. Evidently,
this power series converges for any value of 	. Consequences
of the factor sin�l� /4� are that all coefficients of 	l, where l
is a nonzero multiple of four are zero, the other coefficients
alternate signs in groups of three such that three are positive,
three are negative, etc., and the terms with odd l include a
factor of �2.

IV. PLANCK DISTRIBUTION SOURCE

A thermal source that emits a Planck distribution of radia-
tion differs from the monochromatic source at r� that was
assumed earlier. A thermal source is invariably extended, and
its radiance depends on the source temperature T. The result-
ing diffraction profile can be obtained from the foregoing
analysis if one considers a small element of the source area
dA� near r� and the contribution to the irradiance per unit
source area, dE�r ,T� /dA�. The analogous quantity in the ab-
sence of the diffracting edge may be denoted by
dE0�r ,T� /dA�. The ratio of these two quantities, �F�T��
= �dE�r ,T� /dA�� / �dE0�r ,T� /dA��, can be obtained from the
above power series using Planck’s law. This ratio is given by

�F�T�� = ��
0

�

dk
k3

e�k − 1

�U�r��2

U0
2 ����

0

�

dk�
k�3

e�k� − 1
� ,

�35�

where �=c2 / �2�T�, and the dependence on r enters through
the variable 	= �k�2�1/2x0. The identity

�
0

�

dk
k3	l

�ek� − 1�
= �−4��4 + l/2���4 + l/2�ul, �36�

where u= ��2 /��1/2x0, yields

�F�T�� = �
l=0

�
��1/2���4 + l/2���4 + l/2�

��4���4���1/2 + l/2�
sin�l�/4�

l�
ul.

�37�

The leading terms in the series are

�F�T�� =
1

4
+

35��9/2�
32��4��2

u +
4��5�
���4�

u2 +
105��11/2�
64��4��2

u3

−
693��13/2�
256��4��2

u5 − ¯ . �38�

This series converges for �u � �1.

V. ASYMPTOTIC SERIES

The power series in Eq. �37� can be analytically continued
to give an asymptotic series in powers of 1 /u for �u � �1
using a Barnes type of integral representation �2�. The power
series is written here as

�F�T�� =
1

4
+

��1/2�
��4���4�

Im J�u� , �39�

where

J�u� = �
l=1

�
��4 + l/2���4 + l/2�

��1/2 + l/2�l�
�uei�/4�l. �40�

The continuation from the region �u � �1 to the region �u �
�1 is mediated by the integral

I�u� = −
1

2�i
�

1/2−i�

1/2+i�

ds
��4 + s/2���4 + s/2�

��1/2 + s/2�s
�− uei�/4�s

sin �s
,

�41�

which with suitable restrictions is an analytic function of u,
equals the sum in Eq. �40� for �u � �1, and can be expanded
in an asymptotic series in powers of 1 /u for �u � �1. This
follows from consideration of various contour-integral repre-
sentations of J�u�. The relevant contours are illustrated in
Fig. 2, and are discussed in this section.

For s on the contour of integration in Eq. �41�, the prop-
erties of the � and � functions yield �12�

� ��4 + s/2�
��1/2 + s/2�

�→ � s

2
�7/2

�42�

as �s � →� and

���4 + s/2�� 
 ��17/4� . �43�

Also with the definitions −u= �u �ei� and s2=Im s, we have
for s2→ ±�

� �− uei�/4�s

sin �s
�→ 2�u�1/2e−��+�/4�s2e−��s2�. �44�

Evidently, the integral in Eq. �41� converges for � in the
range

�� + �/4� 
 � − � , �45�

where � is a small positive number for any �u�.
For �u � �1, a sequence of integrals IN�u� is defined with

the same integrand as in Eq. �41� but with different contours.
Each modified contour is the perimeter of the area enclosed
by the straight line s=1/2+ is2, where −� �s2��, and the
nearly complete semicircle s= �N+1/2�ei�, where N is an
integer and �� � �� /2. In the limit N→�, the integral of the
portion along the straight line is just the integral in Eq. �41�.
On the circular contour, the estimates in Eqs. �42� and �43�
are valid, whereas �see, for example, Ref. �12��
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�− uei�/4�s

sin �s

= 
O�exp�2−1/2�N + 1/2�ln�u��	 for 0 
 ��� 
 �/4

O�exp�− 2−1/2�N + 1/2���	 for �/4 
 ��� 
 �/2
.

�46�

Hence, the integral along the circular contour approaches
zero as N→�, provided �u � �1, and IN�u�→ I�u� in this
limit.

For each integral IN�u�, the contour is a closed path encir-
cling �in the negative sense� N poles at the zeros of the sine
function at positive integer values of s. The integral is then
equal to −2�i times the sum of the residues of these poles,
which gives

IN�u� = �
l=1

N
��4 + l/2���4 + l/2�

��1/2 + l/2�l�
�uei�/4�l, �47�

so that IN�u�→J�u� as N→�, and consequently I�u�=J�u�
for �u � �1.

The integral I�u� provides a convenient way to calculate
the intensity for either �u � �1 or �u � �1 as a single integral.
We have done this and the result is in agreement with the
result of a direct calculation of the Planck-Fresnel intensity
based on conventional Fresnel integrals together with a nu-
merical evaluation of Eq. �35�. An earlier calculation of this
quantity done differently is described in Ref. �13�. The
Planck-Fresnel intensity profile is shown in Fig. 3.

To obtain the asymptotic expansion for �u � �1, the con-
tour in Eq. �41� is deformed to a new contour composed of
three contributions: CK, CR, and CH giving integrals denoted

by KM�u�, RM�u�, and HM�u�, respectively. The contour CK

encircles the real axis from −M to 1 /2 and back in the posi-
tive sense, CR extends from −M − iv to −M + iv, and CH con-
sists of two horizontal segments from −M + iv to 1 /2+ iv and
from 1/2− iv to −M − iv, where M is an odd positive integer
and v→�. In this limit, we have

I�u� = KM�u� + RM�u� + HM�u� . �48�

For the function HM�u�, on the horizontal contours CH,
the estimate in Eq. �42� applies to the ratio of gamma func-
tions, the zeta function has the form �14�

��4 + s/2� = O��v�p� , �49�

where p is a constant that depends on −M, i.e., the minimum
value of Re s on the contour, and

FIG. 1. �Color online� Diffraction of radiation from a small
source by an edge. The dashed-dotted line indicates the shadow
boundary, and the irradiance profile in a horizontal plane is shown
for complex radiation. The dotted curve indicates the ideal,
geometrical-optics irradiance profile.

FIG. 2. �Color online� Contours related to the evaluation of J�u�
are shown. Contour C1 defines I�u� in Eq. �41�. This contour can be
replaced by the sum of contours C2, the vertical axis with s1=1/2,
and C3, the nearly complete semicircular contour in the right half
plane. The contours CH, CR, and CK are discussed in the text. The
contributions of HM�u� and RM�u� are bounded, whereas KM�u� is
evaluated term by term to obtain the final asymptotic expansion in
Eq. �81�.

FIG. 3. �Color online� Straight-edge Fresnel diffraction effects
on the irradiance profile for the case of a Planck source, as a func-
tion of u= ��2 /��1/2x0. Positive �negative� values of u correspond to
the illuminated �shadow� portion of the detector plane. The dashed
line shows what is expected from geometrical optics, whereas the
points take diffraction into account.
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� �− uei�/4�s

sin �s
� = O�e−��v�� . �50�

Thus, HM�u�→0 as �v � →�.
To evaluate the contribution from the vertical contour CR,

it is useful to take into account the Riemann relation

��4 + s/2���4 + s/2� =
�2��4+s/2��− 3 − s/2�

2 cos��s/4�
�51�

and the relation

1

��1/2 + s/2�sin �s
=

��1/2 − s/2�
2� sin��s/2�

, �52�

which yield

RM�u� = −
1

2�i
�

−M−iv

−M+iv

ds
��1/2 − s/2���− 3 − s/2��2��3+s/2�− uei�/4�s

2s cos��s/4�sin��s/2�
. �53�

On the contour in Eq. �53� we have

���− 3 − s/2�� 
 ��M/2 − 3� 
 ��3/2� for M 
 9,

�54�

��2��3+s/2�− uei�/4�s� 
 �2��3��2��u��−Me��−���s2�, �55�

�2 cos��s/4�� = �2 cosh��s2/2��1/2 � e�s2/4, �56�

�sin��s/2�� = cosh��s2/2� � e�s2/2/2, �57�

so that as v→� and for M 
9, the remainder is bounded by

�RM�u�� �
23/2�2��3/2�
��2��u��M

�S1 + S2� , �58�

where

S1 = �
0

M

ds2
���1/2 + M/2 + is2��

�M + is2�
e��/4−��s2

�
��1/2 + M/2�

M

e��/4−��M − 1

�/4 − �
, �59�

and

S2 = �
M

�

ds2
���1/2 + M/2 + is2��

�M + is2�
e��/4−��s2. �60�

In the integrand in S2, it is necessary to include the exponen-
tial damping of the gamma function for large imaginary ar-
gument. In this case �s2�M�, we write

���1/2 + M/2 + is2/2��2 = �1

2

M� �

j=2
even

M−1

�j2 + s2
2�� �s2

sinh��s2/2�

�
�s2

M

2�M+1�/2 sinh��s2/2�
�61�

so that

S2 �
�1/2

2�M+3�/4M
�

M

�

ds2
s2

M/2e��/4−��s2

�sinh��s2/2��1/2

�
�1/2

2�M+1�/4M
�

0

�

ds2
s2

M/2e−�s2

�1 − e−�M�1/2

=
�1/2��M/2�

2�M+5�/4��M/2+1��1 − e−�M�1/2 . �62�

Hence, �RM�u�� is bounded by cM / �u�M, where cM is a con-
stant independent of �u� and is given by Eqs. �58�, �59�, and
�62�.

For the function KM�u�, the integral is

KM�u� = −
1

2�i
�

CK

ds
��1/2 − s/2���− 3 − s/2��2��3+s/2�− uei�/4�s

2s cos��s/4�sin��s/2�
, �63�

where the contour CK is a closed path encircling �in the positive sense� the poles of the integrand on the real s axis between
−M and 1/2, and the integral is evaluated by summing the residues of the poles inside CK. The poles are at zero and the even
negative integer values of s, so it is convenient to write the term arising from the singularity at s=−2m, where m is a
non-negative integer, as
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T−2m = −
1

2�i
�

C−2m

ds
��1/2 − s/2���− 3 − s/2��2��3+s/2�− uei�/4�s

2s cos��s/4�sin��s/2�

=
1

2�i
�

C0

dt
��t + m + 1/2���t + m − 3��2��3

2�t + m�cos���t + m�/2�sin���t + m���2��u�2ei�2�+�/2��t+m , �64�

where C−2m is a contour with a radius less than 1/2 encircling the point s=−2m in the positive sense, and the change of
variable from s to t, where s=−2t−2m, is made to arrive at the second line. Some of the poles in the range of integration are
of order two, so it is necessary to expand the relevant factors in the integrand to order t. The required expansions are as
follows:

��t + m + 1/2� = ��m + 1/2��1 + t��m + 1/2� + O�t2�� , �65�

��t + m − 3� =�
1

120
�1 + t�ln 2� + � −

11

6
−

���4�
��4� 
 + O�t2�� m = 0

−
��3�t
4�2 �1 + O�t�� m = 1

−
1

12
�1 + O�t�� m = 2

−
1

2
�1 + t ln 2� + O�t2�� m = 3

1

t
�1 + t� + O�t2�� m = 4

��m − 3��1 + t
���m − 3�
��m − 3�

+ O�t2�� m 
 5,

� �66�

1

t + m
= �

1

t
m = 0

1

m
�1 −

t

m
+ O�t2�� m � 0,� �67�

1

cos���t + m�/2�
= �im�1 + O�t2�� m even

im+12

�t
�1 + O�t2�� m odd,

�68�

1

sin���t + m��
=

�− 1�m

�t
�1 + O�t2�� , �69�

1

�2��u�2ei�2�+�/2��t+m = � − i

2�u2
m

�1 − t�ln 2��u�2 + i2�

+ i�/2� + O�t2�� . �70�

In Eq. �65�, � is the logarithmic derivative of the gamma
function, and in Eq. �66�, � is Euler’s constant. Evaluation of
the residues yields

T0 = −
�5/2

30
�11

6
+

���4�
��4�

+ ln 4�u�2 + i�2� +
�

2

� , �71�

T−2 =
i��3�

2�3/2u2 , �72�

T−4 = −
�1/2

32u4 , �73�

T−6 =
i5

16�3/2u6�41

15
− � − ln 4�u�2 − i�2� +

�

2

� , �74�

T−8 =
105

256�3/2u8�1303

420
− ln 8��u�2 − i�2� +

�

2

� ,

�75�

T−2m = −
i8���m + 1/2���m − 3�

m�2�u2�m ���m + 1/2� +
���m − 3�
��m − 3�

−
1

m
− ln 2��u�2 − i�2� +

�

2

�, m 
 5 odd, �76�

T−2m =
4�2��m + 1/2���m − 3�

m�2�u2�m , m 
 6 even. �77�

The terms with m=2 and m=3 are special cases of the gen-
eral expressions in Eqs. �77� and �76�, whereas the terms
with m=0, m=1, and m=4 are not. These terms are excep-
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tional because for m=0, there is an extra factor of t−1 in Eq.
�67�, for m=1, the zeta function has a zero, and for m=4, the
zeta function has a pole. We thus have the asymptotic expan-
sion

I�u� = �
m=0

�M−1�/2

T−2m + O��u�−M� . �78�

For the intensity profile, only terms with an imaginary
part contribute, i.e., those with m=0, m=1, m=3, m=4, and
odd m
5. A further simplification is that u is real in the
expression for the intensity profile, so that from the defini-
tion of �, which was given by −u= �u �ei�, and the restriction
on the range of � in Eq. �45�, � is given by

� = − ��u�� . �79�

The result for the asymptotic expansion of the intensity pro-
file is

�F�T�� =
1

4
+

��1/2�
��4���4� �

m=0

�M−1�/2

Im T−2m + O��u�−M� , �80�

or

�F�T�� = ��u� +
15��3�
2�5u2 +

75

16�5u6�41

15
− � − ln 4u2�

+
1575

128�4u8���u� −
1

4
�

− �
m=5
odd

N
8���1/2���m + 1/2���m − 3�

��4���4�m�2�u2�m ���m + 1/2�

+
���m − 3�
��m − 3�

−
1

m
− ln 2�u2� + O��u�−2N−3� . �81�

VI. CONCLUSION

The Fresnel intensity distribution has been obtained as a
power series in powers of the distance from the geometrical
shadow boundary by solving a differential equation for that
quantity. The result is given by Eq. �34�. Term-by-term inte-

gration of this series gives the intensity pattern for the Planck
distribution of frequencies as a power series in Eq. �38�. This
power series is analytically continued by means of a Barnes
integral representation to give the asymptotic series for �u �
�1 in Eq. �81�.

We conclude with the following observations. First,
evaluation of two terms of the asymptotic expansion

�F�T��2 = ��u� +
15��3�
2�5u2 �82�

provides a good numerical approximation to the intensity
profile for �u � 
1 except near u=1, as shown by the numbers
in Table I. Also, it is noteworthy that the intensity profile,
which for a single wavelength involves the squares of
Fresnel integrals, can be written as a powers series with
simple coefficients in which every fourth term �after the ze-
roth term� is zero. Further, this power series has a contour
integral representation amenable to a Barnes-type evaluation,
giving rise to the asymptotic expansion for a Planck source.
This asymptotic expansion has the property that except for
the leading geometrical shadow contribution and one term
proportional to u−8, all terms are symmetric with respect to
the geometrical shadow boundary and are proportional to
u−�4i+2�, where i is a non-negative integer.
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TABLE I. Comparison of the truncated exact numerical values
and the values given by the two-term asymptotic expansion in Eq.
�82� for the Planck-Fresnel intensity. The exact values are obtained
by direct numerical integration of Eqs. �15� and �35�.

u �F�T�� �F�T��2 �F�T��− �F�T��2

−8 0.000 460 0.000 460 0.000 000

−4 0.001 833 0.001 841 −0.000 008

−2 0.007 122 0.007 365 −0.000 143

−1 0.024 696 0.029 460 −0.004 764

1 1.103 369 1.029 460 0.073 910

2 1.007 616 1.007 365 0.000 251

4 1.001 835 1.001 841 −0.000 006

8 1.000 460 1.000 460 0.000 000
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